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Numerical Solution for Eigenvalues 
and Eigenfunctions of a Hermitian Kernel 

and an Error Estimate 

By E. Rakotch 

Abstract. New error estimates for eigenvalues of symmetric integral equations are ob- 

tained. These estimates are applicable to a more general class of integration methods 

and, in many cases, are better than those of Wielandt. For every eigenvalue, a numeri- 

cal solution for the corresponding eigenfunction is also obtained. Whenever the exact 

eigenvalue happens to be simple, an error estimate for the corresponding eigenfunction 

is alsQ derived. 

1. Introduction. Let K(x, t) be a Hermitian kernel defined in I x I, where I 
[a, b], i.e., K(t, x) = K(x, t), such that 

F(x) - IK(x, t)12 dt is bounded in I; 

then all the characteristic values ,u, of K(x, t) are real and there exists an orthonormal 
set {y (x)} of characteristic functions [5 ], i.e., 

(1) f K (x, t)yi(t)dt =gyi(x), (Yj,y1) = 60, 

where (u, v) f-bu(x)v(x)dx is the scalar product of two complex functions u(x), 

u(x) E L2(I) {z(x) I (z, z) <o?}. 

Further, let S be a rule of numerical integration with weights win > 0 and nodes 
x I, i = 1, ... , n, by which the approximation fbf(x) dx t w1nf(x1n) is 

made. 
To obtain a numerical solution for the characteristic values of K(x, t), Wielandt 

[9] replaced the original problem by the sequence of eigenproblems 

(2) K Yi= gnnyi(n) K{O)E WinK(x1in x1n), i, j = 1,..., n, 

with real i and n linearly independent eigenvectors yfI), for a class of integration 
rules possessing the properties 

n b 
lim E winf(xin) = f(x)dx for every f(x) E C(I), 

nl-4* o i= i 

n 
(3) Win b -a; 

i-1 

the eigenvalues '1kn, k = 1, . . ., n, are then taken by Wielandt as approximations, 

which also converge as n - oQ, to the corresponding characteristic values of K(x, t). 

To specify this correspondence, the following assumptions are made: 
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Let V {cl, , . m } be a subset of the set R of all eigenvalues of a square 
matrix A or of all characteristic values of a kernel F(x, t) defined in I x I, and let W 
{z2 Iz E V}; then 

(a) if a,, . . . , am are the m largest (smallest) real elements of R such that 
1 > ?U2 > . . . > am (@l 6 i 2 < ... < am) then every cti # am with multiplicity 

ri > 1 occurs ri times in V, 

(b) if a,, . . am are the m real elements of R the largest modulus such that 

lOl I > a I . . .> lam l and there are ri real elements of R of modulus l.il, then ev- 
ery #3 0 U2 occurs ri times in W. 

The problem which arises now is what is the best error estimate for the eigenval- 
ues A1kn of (2). In this context, and with the above assumptions, Wielandt obtained 
for those integration rules, which we shall call convergent with respect to K(x, t)-i.e. 
the sequence 

n 

(4) ?n?(X, t) - WinK(x Xin)K(xin, t)- K(x, z)K(z, t)dz 
i=l1 

of the error functions for f(z) K(x, z)K(z, t) converges to 0 uniformly in I x I, the 
following result: 

Let pl l > 12 n *** l+n> >1sn ... ,2 llnbe the r largest posi- 
tive and the s smallest negative eigenvalues of (2), and let 

A 
+ 

> p 
+ 

> * * * +1 > o > p1S > . ... >' p1 > pll 

be the corresponding characteristic values of K(x, t); then 

14= lim 4;, ,u = lim .ujn, i =1,..., r, j=1,..., s, 
n- oo ln-400 

and this convergence is uniform in i and j, i.e., 

akn Ik 1k < qn lim qn=? 

where either 

Alkn =1knw n k / k, or /Ikn =lkn I lk 1k' 

Baker [2] obtained convergence properties of a similar type for simple characteristic 
values of K(x, t). The best estimate obtained by Wielandt is qn = O(.\/n), where 

En- max1XIrqn(x, t)l and 7?n(X, t) is defined by (4), whereas that of Baker is qn 

O(max win). Other authors ([1], [3]) obtained better bounds, but only for the dis- 
tance of every eigenvalue A1kn to the nearest characteristic value of K(x, t). In this pa- 
per improved estimates of the form (see Theorem 1 at the beginning of Section 4) 

akn = [max(I,uklnl, lAlkl)] Pn , Pn = (en) 

are obtained, which generalizes Wielandt's convergence theorems for all integration rules 
which are convergent with respect to K(x, t) and satisfy f3). Moreover, the new result 
enables application of integratidn rules, which are convergent with respect to K(x, t), 
to kernels which exhibit singular behavior in I x I and for which, therefore, no solution 
can be found within the scope of Wielandt's and Baker's papers (see Example 2 in Sec- 
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tion 2). As a consequence, an error estimate for the numerical solution of (1), conver- 
gent to 0 uniformly in I for every integration rule which is convergent with respect to 
K(x, t), is derived. The new error estimates for eigenvalues are to be interpreted as 
follows: our estimates are better than those of Wielandt for the first mn eigenvalues 

bUkn such that max(I,Iknl, 1 uk ) > CN/e for some C> 0, where the sequence mn tends 
to infinity; for other eigenvalues both our and Wielandt's estimates are of the same or- 
der of magnitude, namely O(Ve), and ours are not necessarily better. 

2. Numerical Results. To illustrate the superiority of the new error estimates giv- 
en by Theorem 1 in Section 4, two numerical examples are presented. To the second 
of our examples Wielandt's method does not apply. 

In the tables of results given below, /i4+ and ,l'n are the eigenvalues defined in 
Theorem 2 near the end of Section 4, whereas y+ (x) and yTh(x) are the numerical so- 
lutions for characteristic functions corresponding to A+L and p7ln, respectively, obtained 
by the procedure described at the end of Section 4. The improved error estimates are 
those described in Section 5. The error estimates for yj+ (x) and yTh(x) are those ob- 
tained by application of the remark concluding the discussion of Theorem 3 in Section 4. 

Example 1. The integral equation is 

J max(x, t)y(t) dt = ,uy(x). 

Characteristic values and characteristic functions are, respectively: 

N~2 cosh Rx 
R2 and where R is the positive root of the equation z tanh z = 1; 

cosh R 

Xcos rNx 
-2r and cos rNX N = 1, 2, . . ., where 0 < r < r2 < . . . are the positive 

cos rN roots of the equation z tan z + 1 = 0. 

The integration rule S mentioned at the introduction is the trapezoidal rule. 
To obtain an , On and 'yn, as defined in (24), put 

An(z) (n - 1)z - [(n - 1)z], Bn(z) 1 -An (z), Cn(z) An(Z)Bn(z) 

Dn(z) An(z) - Bn(z), h (n - 1)-1, Fn(z) 1 - z - Cn(z)[3z -hDn(z)]; 

then 

h2 r3tCn(x) + Fn(t), x < t, 
n, t) = 

6- .3xCn (t) + Fn(x), x > t, 

which after a simple, but lengthy, calculation yields 

n=18 
= kh t{tGn(t) + hCn(t)Dn(t)[Gn(t) + 0.3tCn(t)] + F2(t)} dt, 

k1 k-1)h 
n 

where Gn(t) 0.3t + Fn(t), and 

7n(x xin) dx = f n xin) dx + Xin) dx. 



NUMERICAL SOLUTION AND AN ERROR ESTIMATE 797 

Each of the above summands is evaluated by the closed Newton-Cotes formula with 7 
points. The remark at the end of Section 4 is applied with p = L = 1. 

For comparison with Wielandt's results the error estimates for the negative eigen- 
values 11Th, together with error estimates for the numerical solutions for characteristic 
functions, are presented in the following table: 

TABLE 1 

Error Improved Error Actual maxi- 
estimate error estimate Actual error mal error Wielandt's 

Case 1 for 91-n by estimate for for HIn for y- (k/N), estimate 
Theorem 1 for Mjn yn(x) k = 0, 1, ..N 

n = 101 1 7.34 10-5 7.34 10-5 0.0067 1.26 10-5 0.00011 

2 6.45 10-4 3.51 1 0-4 0.872 9.22 10-6 0.000466 0.00539 

N= 200 3 0.00153 8.15 10-4 8.72 10-6 0.00104 

n - 201 1 1.836 * 10-5 1.836 * 10-i 0.00167 3.14 10-6 2.77 - 
10-1 

2 1.61 10-4 8.78 10-S 0.2073 2.306 . 10-6 1.17 i 0-4 0.00269 
N= 1000 

3 3.75 0-4 2.04 10-4 2.18 10-6 

4 6.85 10-4 3.66 10-4 1.628 - 10-1 _ 

It is to be noted that as the initial error estimates for the eigenvalues P71n tend to 
grow with 1, they are better than those of Wielandt only for some first eigenvalues. To 
obtain a comparable error estimate unobtainable by Theorem 1 for other eigenvalues, 
the bound qn defined by (26) with the optimal C = o'0.5 (1 + N/5) can be taken. 

Example 2. The integral equation is 

O 
(I + isf - 

i\/t)1y(t) dt = py(x). 

The exact soluticrn is unknown. 
The integration rule, which is derived by the transformation u = z2 for the inte- 

gral f K(x, z)K(z, t) dz and application of the Gauss quadrature with weights coi and 
nodes ?in, i = 1, . . ., n, is defined by 

=in2Win tin, xin-i, i-1...,n 

therefore, using our definition (4) [7, p. 48], 

F2n 
77n(X, t) = 2cn uK(x, u2)K(u2, t)] 

2(2n)!cn [ /T?i I 
\l- - ---2i N(t X- + j)2 n + _ j_)2 n + 1 

where Cn -[(2nn)2(2n + 1)!]-1 and 0 < = t(x, t) < 1, and consequently 

1?n(X, (n) (2 + 1) (+ ? \T). 

The error estimates, with those for yj+(x) obtained by application of the remark 
at the end of Section 4 with p = 1? and L = 1, are given in the table below: 
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TABLE 2 

Error estimate for y+ Improved error Error estimate 
n _ by Theorem 1 estimate for p+ for y+ (x) 

1 2.31 -lo- 2.31 l0o 8.8 - 1 7" 

6 2 1.015 l-05 5.08 10-6 0.00383 

3 2.12 o0-4 1.033 10-4 

1 9.1 0lo-I 9.1 0lo-I 3.41 o0-9 

8 2 4- 10-8 2 . 10-8 1.47 * l-5 

_ 3 8.15 * 1i0- 4.08 10-7 0.11 

The approximations for n = 9 rounded to 10 digits are: 

+ -- 0.9543482459, p,t 0.0434068611, ,U41 0.0021321407. 

3. Numerical Solution for a Characteristic Function. Since the new results, pre- 

sented in Section 2, refer also to an error estimate for the corresponding characteristic 

function, an appropriate definition of the approximate solution for a characteristic 

function, which converges to the corresponding characteristic function, is to be given. 

To obtain such a definition, observe first that by the similarity relation between the 

matrix K(n) of (2) and the Hermitian matrix H with H..= K(xin, x1n)V; i, j = 

1, .. , n, the eigenvector y(n) is related to the corresponding eigenvector Zk of H by 

Zki Yn i= 1 ... , n. Further, defime a new scalar product (u, O)n of two 

vectors u, v in Cn-the n-dimensional complex Euclidean space-and a new norm luln 
in Cn, by 

(5) ~~(u, O)n- Win UAii luin V-U )n 

and denote by llfll- vcJ77f the norm of a complex function f(x); therefore, if the ei- 

genvectors zk, k = 1, ... ., n, of H are chosen so as to form an orthonormal set, then 

(6) ( ( = npqn p, q =n. 

For every eigenvector y*n) of (2) with Akfn # 0, define now the numerical solution 

ykln(x) for a characteristic function generated by yk(n), which also satisfies Ykn(xin) = 

Y(n), i= n, ..,nas 
n 

(7). Y*(X -H I 
win y(nj)Kf(x Xjn)- Ykn(x 

knj=1 
k 

It is natural to expect the difference between the two sides of (1), with Pk and 

Yk(x) replaced by ,kn and ykn(x), respectively, to be expressible in terms of the error 

function (4). In fact, 
b ~~~~~~n 

/.knykn(x) -K(x, t)ykn(t)dt = i. Winwkjy)nn(X, Xn), 

(8) 
where 1n (X, t) is defined by (4). 

Let, further, {y* (x)}, m = 1,... , r, form an orthonormal base of all characteristic 

functions of K(x, t) corresponding to Puk; then for every n with '1kn 0 0, there exist 
coefficients 'n), m = 1, ... , r, such that the error function 
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r 

ekn(X) =Ykn(X) km c mym 
m=1 

is of minimal norm. In fact, 

C - (y*nyn) m =1,...,r; 

and, consequently, 

(9) (ekn f y) = 0 for every characteristic function y(x) of K(x, t) corresponding to Pk 

The functions ekfl(x) and ykn(x) =y,kn(x) - ekn(x) are called the error function and 
the characteristic function, respectively, associated with ykn(x). Now, if the approxi- 
mate numerical solution Yk*n(X) for a characteristic function is taken to be of norm 1, 
i.e., ykn(x) = llykn I-Iykn(x), it can be shown that the characteristic function Ykn(x) 
of norm 1 corresponding to Ik such that the error function en(x) = 

Ykn(X)- Ykn(x) 
is of minimal norm, assumes the form 

(R-l7kf(x) Rkn # 0, 
Ykn(X) = 

tyA(x) with , = Ak, Rkn =?0 

where Rkn = IIyknIL Also, since by (9) llyknIl2 = Rkn + Ilekn 2,we have 

ekn(x) = IYknN [eknf(X) 
- 

("YknI' Rkn)Ykn(X)] 

(10) = IIYk= llk [ekn(X) - Y1H+Rk Ykn(X)} 

4. Error Estimate and Convergence. For the sake of conciseness of presentation, 
the following definitions are introduced: 

Pk and '1kn, k = 1, ... , r, are the r largest (smallest) characteristic values 
of K(x, t) and the r largest (smallest) eigenvalues of (2), respectively, such 

that pi g pi+ 1 (pi S p?i+1) and gin > pi+ l,n (ilin < pi+ 1,n), i= 1,.., 

r- 1. 

In the following, F(x, t) is a kernel defined in I x I. 

U(F) and Un(F) are the set of all characteristic values of F(x, t) and the set 
(12) of all eigenvalues of the matrix F(n) with = wn) 1winF(xin, x1n), i,j= 1, 

* , n, respectively. 

(13) Xk(F) and Xkn(F) are the kth real elements of U(F) and Un(F), respectively, 
in the ordering determined by that of the k,u and the I'kn in (11). 

Mk(F) and Mkn(F), k = 1, ... , r, are the moduli of the r elements of U(F) 
(14) and Un(F), respectively, of largest modulus, such that Mi (F) > Mi 1 (F) and 

Min (F) >- Mi + 1 n (F), i = 1, ,r1 

(15) Q (F, u)- F(x, t)u(t)u(x)dx dt, 

n 

(1Qn(F, u)-E WinWin in, Xn)ujui 
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(17) Vk(F)- y F(x, t) Y(t)dt = Xk(F) Y(x), 1I YI = I}, 

Vkn(F) {zIF(n z = Xkn(F)z, lzIn = 11, where 
(18) 

FiP -=w,F(Xin. ,x) i, j =1,**, n, and Izl is defined by (5). 

(19) 6n(F, x, t)-, winF(x, xIn)F(xin t)- F(x, z)F(z, t) dz, 

(20) ~ ~ ~~ n(F, u)-f 0a sFx, t)u(x)u(t) dx dt, 

n 
(21 ) DZ*(F,8)- En Win Win 6 (F, xin xin)uui, 

(22) Akl(F) [maxj Win fa 6n(F, x, xin)u(x) dx2 Iu e Vk(F) 

(23) Bkn(F) [maxlFa winui6n(F xin, x) dxlu e Vkn(F)t?; 

an [fbfln(Xt dx dt1 On - WinWin IT?n(Xin, Xjn)I2] 

(24) zn- Win q7n(x, xin)I2 dx], Pn max(oan, fn)' 

where rqn(x, t) is defined by (4). 

(25) Ykn(x) and ekn(x) are, respectively, the function (7) and the error 

function associated with it as defined in Section 3. 

The new error estimates for the eigenvalues obtained in this paper are now sum- 

marized in the following two theorems: 

THEOREM 1. If, with Definitions (11) and (24), vkn max( 'Akn", 'IPk ) > C< 

for some C > 1, thert 

() llAkn 
- -kl 6 < kn'(^In + Pn) I - vknPn ] -'2< V-kn'(-n + POPl-C2 

(b) 11~~~~l lAn - 1I'S an [7nlvn -Pn ]- /2 v 

THEOREM 2. Let IA+ > fi+ rn > sH n6 n < < **Sps-n < ? be 

the r largest positive and the s smallest negative eigenvalues of (2), and let A+ > 

> ***> 14 > 0 > 1p- l... > p 
- 

be the corresponding characteristic values 
of K(x, t). 
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If the integration rule S is convergent with respect to K(x, t) and satisfies (3), 
then 

lim Ati Atu, Ilim ,n-, =-, i = 1,..r, j-1..s; 
n-+oo n-+oo 

and the convergence is uniform in i and j, so that for every C > 1, 

lpt - pil < q, I pi-n <i q, i = 1,..., r,j=1 ,sP in I n- n 

(26) qn max{C, [C2 p_ l] ?/ p, where 'yn and Pn are defined by (24). 

Theorem 2 is a generalization of Wielandt's results. 
The error estimate for the approximate numerical solution of (1) is given by: 
THEOREM 3. The error function defined by (25) satisfies (see Definitions (4), 

(11) and (12)) 
n_ 

kl(x)I ? Ih l I w1n ly ln) Imax lIn(x, Xjn)l + qknIjn'\f(XY] 
kn(j=l 

<PkPkn Wi kI 

? l"kn 11k IGn(X)4 

where 

F(x)-fr IK(x, t)I2dt, Gn(x) [F(x) + rqn(x, X)]/2 

(27) qkn sup{l,ukf -1 XL IE U(K), X P Ak}, 

Ii n-[ I7n (X, Xin )12d 

This bound for ekn(x), and consequently that for the function ekn(x) defined by (10), 

are improvements, by a factor of O(n-1/2), of a similar error estimate obtained in [4]. 
Error estimates for the eigenvalues in special cases are given in Section 5. 

An immediate consequence of Theorem 2, analogous to the one which follows 

from the convergence theorem in [1], is: 
If the integration rule S is convergent with respect to K(x, t), then ekn(x) and 

ekn(x) converge to 0 uniformly in I. 

Remark. If K(x, t) satisfies a Lipschitz condition of the form lK(u, t) - K(v, t)l < 

Llu - vlP, 0 <p 1, in I x I, then (see Definition (4)) 

lekfl)I? I lA-1i lyhI Wi~wn IyQn I [maxltin(x. x,n)l ? qknIin-\/IF)] kn(X)l < lPk lllknl?jlk l[a=77(X kz) + k I 

(n) + 2-PL n~~~~I(nI1 
?IIkn kIl[maxIYkrIXy m ax (xm + l,n Xm n) E Win lyk( 1]J 

where xon = a and xn+ 1,n = b. 

Since the estimate for ekn(x) involves an estimate for qkn, it can be found only 
if the multiplicity of P1k is known. Such an estimate is obtainable, for instance, when 

k is a simple characteristic value and in this case we deduce by Theorem 2, Eq. (38) 
of [61 and Lemma 1 in Section 6: 
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COROLLARY 1. If IUk is a simple characteristic value of K(x, t) and the integra- 

tion rule is convergent with respect to K(x, t) and satisfies (3), then for some choice 

of eigenvectors y fn) such that ly(n)I= 1 (see Definitions (5) and (7)), 

Ykn(x) yk(x) uniformly in I, and so does also llykn -ykn(x). 

By (7) it follows that 
n 

llYkn 112 = P- 2II w1, (nynGXn x1n) =kn j= 1in Winyki ki 

where 
t b --bb 

G(x, t)- K(z, x) K(z, t) dz = fbK(x, z)K(z, t) dz. 

In the case where G(x, t) cannot be determined exactly, an approximation ckn 

of llykn" is found by applying some quadrature formula for determining G(x, t) at the 

points (xin, x1n); the approximate solution for a characteristic function is then taken 

to be C7knykn(x), and the error estimate is 

ekn=(x) = Ickfnyknl(x) +kny In )ykn(X)I ? Ie*k(x)I 

(Ckn flYkn 1I) l(Ckn - IIyknlI)Ykn(x)l + lekn(x)I, 

where eZkn(x) is given by (10). 

5. hnproved Error Estimates for Simple Characteristic Values and for Positive- 

Definite Kernels. An error estimate for a simple characteristic value can be improved if 

the approximate eigenvalue 11kn satisfies the inequality (see Definition (11)) 

'Pkn -Pk' <min 'Pkn 
- 

i' 
i*k 

If the integration rule S is convergent with respect to K(x, t) and satisfies (3), 

and P1k is a simple characteristic value, then by Theorem 2 there exists an integer N 

such that the above inequality holds for n > N, and by Lemma 5 (stated in Section 6) 

'iHkn - Ilk' = inf{I,takf - MI 'X U(K)} < lI/.L,J'llykn11 "Yn 

An error estimate for a positive-definite kernel is obtained from the following 
theorem: 

THEOREM 4. Let ,Ukn E Un(K) and jYk E U(K), k = 1,... , n, such that 
rxkfl = Mkfn(K) and r71kI = Mk(K) (see Definitions (12), (14) and (4)). Then 

I"%k -jI M1('%) ? M1M(7), k = 1, 2, ... 

where T1kn =Ofor k > n. 
COROLLARY 2. If K(x, t) is positive-definite and (see Definitions (1 1) and (12)), 

kn > - min {XI X E Un(K)}, then, l,4n- 1 6 M1t(2) ? 
We also obtain 
COROLLARY 3. IhIn+kI < M1(n-), k = 1, 2. 

6. Discussion of the Theorems. To obtain the final results presented in Theorems 

1-4, the following lemmas are necessary using the definitions introduced at the begin- 
ning of Section 4: 



NUMERICAL SOLUTION AND AN ERROR ESTIMATE 803 

LEMMA 1. Let un = (U n I . * , Unn) and A = (aO)) be, respectively, sequences 
of vectors and n x n matrices with complex elements. Then (see Definition (5)) 

(a) lu 12 = - 
n 

I(ul Zk)nl = 1 I(zk un)nI2 for every sequence Zk, k = 

1, . . ., n, satisfying 

(28) (ZpI Zq)n = 6pq' p, q = 1, . . , n. 

(b) If the integration rule S satisfies (3), then 
n n 

lim maxluniI = 0 implies irm WinUni= lim r wi Iy(n u)I 0 
n-- n - oo i-- oo in in 

k-1, 2,... 

and 
n 

lim maxlal(9I = 0 implies lir M w aw* =) 0. 
n-)-oo i ij noo ij=1 

LEMMA 2. If Xk -Xk(F) X1 (F), where F(x, t) is a Hermitian kernel defined 

in I x I, then (see Definitions (13), (22), (17) and (20)) 

_X- 
--1/2 

Ak()Xk )Xkn(F)) < Akn(F) [1 - k max V Dn (F, u)i 

LEMMA 3. If Xkn =Xkn(F) = Xln(F), where F(x, t) is a Hermitian kernel de- 

fined in I x I, then (see Definitions (13), (23), (18) and (21)) 

)tkn()kn -Xk(F)) ?Bkn(F) max ID*(F, u) 

This lemma is a consequence of Weyl's theorem [8, p. 445]: 
LEMMA 4. Let D(x, t) =F(x, t) - G(x, t), where F(x, t) and G(x, t) are Hermi- 

tian kernels defined in I x I; then (see Definitions (13), (15) and (16)) 

(a) if Q(D, u) > O for every u(x), then Xk(F) > Xk(G), k = 1, 2,...; 

(b) zf Qn(D, u) > O for every u E Cn, then Xkn(F) > Xkn(G), k- 1,.. n. 

The next and last lemma is used to obtain the improved error estimates for sim- 

ple characteristic values mentioned in Section 5. 
LEMMA 5. With Definitions (11), (12), (7) and (24), 

Dkn -inf{1Ipkn- 1- X = U(K)} < IPknI IIy llkn' "-n 

This is a slight improvement of the result obtained in [3]. 
The proofs of Lemmas 1, 4 and 5 are straightforward ([6, Lemmas 1, 5 and 2, 

respectively]), whereas those of Lemmas 2 and 3 require some special devices ([6, Lem- 
mas 3 and 4, respectively]). 

The first four lemmas are used to establish part (a) of Theorem 1 by the follow- 
ing steps: 

1. Application of Lemma 2 and part (b) of Lemma 4 to obtain (see Definitions 

(11), (22), (17) and (20)) 

-2 -?2 
(29) Pbk (l-k 

- 
jLkkn) 6 A k n (L) k max IDn(L, u) 

V/k (L)J 

where 
k-i 

(30) L(x, t) K(x, t) - ? (ulp - I*)yp(x)yp(t). 
pzzl 
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2. Application of Lemma 3 and part (a) of Lemma 4 to obtain (see Definitions 

(1 1), (23), (18) and (21)) 

(31) IHkn(JWkn Mk) kB kn vk[l - nji (Lnm IDn(Ln, u)j 

where 
k-1 

(32) Ln(x, t) -K(x, t)- E (uJpn -kf)Yp n(x)Ypfn(t) 
p-1 

3. Bounding of Akn(L), max{IDn(L, u)I lu E Vk(L)}, Bkn(Ln) and 

max{lDn*(Ln, u)t lu E Vkn(Ln)} in terms of yn and Pn defined by (24), which is a 
matter of pure manipulations. 

Theorem 2 follows from Lemma 1 and Theorem 1. 
Theorem 3 is a consequence of (9) and the Parseval equality (equation of closed- 

ness [5, p. 10]) for the function ekn(X). 
For the full proof of the above theorems the reader is referred to [6]. 
Finally, we come to the proof of Theorem 4, which terminates our discussion. 
Proof of Theorem 4. The degenerate kernel 

n n 

Gn(x, t) win KK(X, xin)K(Xin, t) = w inK(Xn,x)K(xin, t), 
i=l i=l 

is Hermitian and Gn(x, t) = G(x, t) + 7in(x, t), where 

G(x, t)- K(x, z)K(z, t)dz, 

therefore the characteristic values Pkn of Gn(x, t), where Pi n >) 2n * nn 

Pn + 1 n= . . . = 0, are related to those of G(x, t), which are jk2, by the inequalities 
[8, p. 445]: 

(33) tVkn -kX t Ml (n), k = 1, 2. 

The Vkn, k = 1, . . ., n, are exactly the eigenvalues of the matrix Ln 

(win G(xin, x,n)), which is similar to the Hermitian matrix A(n) defined by 

A( )-4Jinw77 G(Xin, x1n) = vwnw' n G Xn) -7rn(xin ,xjn)]. ii i 

Now, a procedure similar to that described in [8] for characteristic values of ker- 

nels leads to the inequalities 

gikn 2 kn - ln(7 k = 1, 2, .. 

where Ttkn = 0 for k > n, which together with (33) yields 

- k ( k= 1,2. 

Corollary 3 follows from (33). 
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